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Main result of Chapter 2.5

Concentration of the supremum of a Gaussian process about its expectation:

Theorem 2.5.8 (Borell-Sudakov-Tsirelson inequality) Let X (t), t ∈ T be a separable centered
Gaussian process such that

‖X‖∞ := sup
t∈T
|X (t)| <∞ a.s.

Let σ2 = supt∈T E
[
X 2(t)

]
. Then for u > 0

P
(
‖X‖∞ ≥ E ‖X‖∞ + u

)
≤ e−u2/2σ2

,

P
(
‖X‖∞ ≤ E ‖X‖∞ − u

)
≤ e−u2/2σ2

.

• ‖X‖∞ is measurable since X is separable.

• The supremum of GP has sub-Gaussian tails.

• The bound is independent of the size or complexity of the index set T .
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Log-Sobolev inequality

Theorem 2.5.6 (Log-Sobolev inequality) Let γ be the standard Gaussian measure on Rn, and

let f : Rn → R be a twice continuously differentiable function such that f 2 and ‖f ′‖2 are
γ-integrable. Then

Entγ(f 2) ≤ 2

∫ ∥∥f ′∥∥2

2
dγ

Definition 2.5.1 (Entropy) The entropy of f ≥ 0 with respect to a probability measure µ is
defined as

Entµ(f ) :=

∫
f log f dµ−

(∫
f dµ

)(
log

∫
f dµ

)
,

if
∫
f log(1 + f )µ <∞ and as ∞ otherwise.
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Proof of Theorem 2.5.6

Proposition 2.5.3 (Tensorization of entropy) Let P = µ1 × · · · × µn and let f ≥ 0 on a product
space. Then

EntP(f ) ≤
n∑

i=1

∫
Entµi (f )dP

where

Entµi (f ) =

∫
f log f dµi (xi )−

(∫
f dµi (xi )

)(
log

∫
f dµi (xi )

)
which is the function of x1, . . . , xi−1, xi+1, . . . , xn.

If we have Entµi (f ) ≤ 2
∫
|∂f /∂xi |2dµi , then

EntP(f 2) ≤
n∑

i=1

∫
Entµi (f )dP ≤ 2

n∑
i=1

∫
|∂f /∂xi |2dµi = 2

∫ ∥∥f ′∥∥2

2
dP

where f ′ := (∂f /∂x1, . . . , ∂f /∂xn). Hence it is enough to show the cast of n = 1. Apply
Taylor’s expansion to gλ, where g1 = g where f = eg .
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Inequality for Lipschitz functions on Rn

Theorem 2.5.7 Let F be a Lipschitz on Rn, with

‖F‖Lip := sup
x 6=y

|F (x)− F (y)|
‖x − y‖2

≤ 1.

Let X = (g1, . . . , gn) with gi independent standard normal random variables. Then for all λ ∈ R,

E
(

eλF (X )
)
≤ eλE(F (X ))+λ2/2.

As a consequence

P (F (X ) ≥ E(F (X )) + t) ≤ e−t2
, P (F (X ) ≤ E(F (X ))− t) ≤ e−t2

.
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Proof of Theorem 2.5.7

Proof. First consider the case that F is twice continuously differentiable. Let
H(λ) := E

(
eλF (X )

)
. Apply the log-Sobolev inequality to f 2 = eλF to get

Entγ(eλF ) ≤ 2

(
λ

2

)2 ∫ ∥∥F ′∥∥2

2
eλF dγ ≤

λ2

2

∫
eλF dγ =

λ2

2
H(λ).

It is easy to see that
Entγ(eλF ) = λH′(λ)− H(λ) log H(λ).

Let K(λ) = 1
λ

log H(λ). Then by the above inequality,

d

dλ
K(λ) =

d

dλ

(
1

λ
log H(λ)

)
=

1

λ

H′(λ)

H(λ)
−

1

λ2
log H(λ) ≤

1

2
.

Since K(0) = H′(0)/H(0) = E(F (X )), we have

K(λ) = K(0) +

∫ λ

0
K ′(t)dt ≤ E(F (X )) + λ/2.

Therefore
H(λ) ≤ eλE(F (X ))+λ2/2.

The case of F Lipschitz follows by an approximation argument.
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Proof of Theorem 2.5.8

Theorem 2.5.8 (Borell-Sudakov-Tsirelson inequality) Let X (t), t ∈ T be a separable centered
Gaussian process such that ‖X‖∞ := supt∈T |X (t)| <∞ a.s.. Let σ2 = supt∈T E

[
X 2(t)

]
.

Then

P
(
‖X‖∞ ≥ E ‖X‖∞ + u

)
≤ e−u2/2σ2

, P
(
‖X‖∞ ≤ E ‖X‖∞ − u

)
≤ e−u2/2σ2

.

Proof. First we consider finite T = {t1, . . . , tk}. Then we can write X = AZ where
Z = (Z1, . . . ,Zk ) is a standard normal vector and A is the symmetric square root of the
covariance matrix of X . By the Cauchy-Schwarz inequality,

max
1≤i≤k

|Az|i ≤ max
1≤i≤k

‖Ai‖2 ‖z‖2 = max
1≤i≤k

σ2
i ‖z‖2

and so the function F (z) := max1≤i≤k |Az|i/(max1≤i≤k σ
2
i ) is Lipschitz with ‖F‖Lip ≤ 1.

Hence Theorem 2.5.7 yields the desired result.

Next we consider separable T . Since T is separable, ‖X‖∞ is a monotone limit of a sequence
of finite suprema almost surely. Then E ‖X‖∞ <∞ a.s. by monotone convergence. Fatou’s
lemma leads to the desired result.
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Reproducing kernel Hilbert space of Gaussian processes

• The support of a centered Gaussian process (the smallest closed set having probability one
under the induced measure) is equal to the closure of the reproducing kernel Hilbert space
(RKHS) of the covariance kernel of the process (Corollary 2.6.17).

• RKHS determines the concentration of the Gaussian process (e.g., Theorem 2.6.12,
Corollary 2.6.18).
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Reproducing kernel Hilbert space of Gaussian processes

• The finite-dimensional distributions of a centered Gaussian process X (t), t ∈ T are
determined by the covariance kernel C : T × T 7→ R , defined by C(s, t) = E(X (s)X (t)).

• The reproducing kernel Hilbert space of X is the completion of the linear space of all
functions

t 7→
k∑

i=1

αiC(ti , t)

where αi ∈ R, ti ∈ T , k <∞, with inner product〈
k∑

i=1

αiC(ti , ·),
l∑

j=1

βiC(si , ·)
〉

H

=
k∑

i=1

l∑
j=1

αiβjC(ti , si ).

• We can write
k∑

i=1

αiC(ti , t) = E

[(
k∑

i=1

αiX (ti )

)
X (t)

]
and

k∑
i=1

l∑
j=1

αiβjC(ti , si ) = E

 k∑
i=1

αiX (ti )
l∑

j=1

βiX (si )


• Reproducing property: for h =

∑k
i=1 αiC(ti , ·)

h(t) = 〈h,C(t, ·)〉H .
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Reproducing kernel Hilbert space of Gaussian processes

For a Gaussian process X (t), t ∈ T , let F be the set of all linear combinations
∑

i αiX (ti ) and
F̄ be its closure in L2(Ω,Σ,P).

Definition 2.6.1 (RKHS of GP) The reproducing kernel Hilbert space (RKHS) of a centered
Gaussian process X (t), t ∈ T is the set of all functions

t 7→ E(hX (t))

where h ∈ F̄ , with inner product

〈E(h1X ),E(h2X )〉H := E(h1h2).

Remark. In the previous slide we define the RKHS as

H = completion ({E(hX ) : h ∈ F})

Since 〈E(h1X ),E(h2X )〉H = 〈h1, h2〉L2(Ω,Σ,P), the map φ : h→ E(hX ) is an linear isometry

between (F , ‖·‖L2
) and (φ(F ), ‖·‖H). Hence the two definitions coincide.
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Reproducing kernel Hilbert space of Gaussian processes

Example 2.6.2 (RKHS of iid standard normal variables) Suppose that T = N and for n ∈ N

gn := X (n)
iid∼ N(0, 1).

Then F̄ =
{∑∞

i=1 αigi :
∑∞

i=1 α
2
i <∞

}
. Furthermore if h =

∑∞
i=1 αigi ∈ F̄ , then

E(hX (n)) = E

{( ∞∑
i=1

αigi

)
gn

}
= αn.

Hence E(hX ) = {αn}∞n=1 ∈ `2. That is, the RKHS of the standard Gaussian measure on RN is
`2.
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Review: Banach-valued random variables

• Let (Ω,Σ,P) be a probability space, and let (B, ‖·‖) be a separable Banach space,
equipped with its Borel σ-algebra B. Let X : Ω 7→ B be a B-valued random variable.

• For simple X =
∑n

i=1 xi IAi
xi ∈ B, Ai ∈ Σ, define E(X ) =

∑n
i=1 P(Ai )xi .

• X is Bochner integrable or strongly integrable if there is a sequence of simple functions Xn

such that E ‖Xn − X‖ → 0. Then define EX = limn→∞ EXn, which is well defined since
{EXn} is Cauchy.

• X is Pettis integrable or weakly integrable if f (X ) ∈ L1(P) for all f ∈ B∗ and there exists
x ∈ B such that Ef (X ) = f (x), f ∈ B∗, where B∗ is the dual space of B, the collection of
continuous, linear maps f : B 7→ R.

• Lemma 2.6.3 Let B be a separable Banach space, and let X be a B-valued random
variable. Then X is Bochner integrable if and only if E ‖X‖ <∞. Moreover, if X is
Bochner integrable, then X is also Pettis integrable and both integrals coincide.
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Review: GP as a Banach-valued random variable

• Gaussian processes can be viewed as a tight Borel measurable map in a Banach space B,
for instance, a space of continuous functions or an Lp space (Example 2.1.6).

• A B-valued random variable X is centered Gaussian if f (X ) is a normal random variable
with mean 0 for every f ∈ B∗.

• By the assumption that the Gaussian process X takes its values in the Banach space
(B, ‖·‖), ‖X‖ is finite a.s..

• Since ‖X‖ has sub-Gaussian tails (Theorem 2.6.8), all moments E ‖X‖p are finite.
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RKHS of a Banach-valued Gaussian variable

Let F̄ be a closure of {f (X ) : f ∈ B∗} in L2(Ω,Σ,P).

Definition 2.6.4 Let B be a separable Banach space, and let X be a B-valued centered Gaussian
variable. The reproducing kernel Hilbert space H of X is the vector space

H =
{
E(h(X )X ) : h(X ) ∈ F̄

}
⊂ B,

with inner product
〈E(h1(X )X ),E(h2(X )X )〉H := E(h1(X )h2(X )).

• E ‖h(X )X‖ ≤
[
E(h2(X ))

]1/2
[
E ‖X‖2

]1/2
<∞, since h(X ) ∈ L2(P) and ‖X‖ is square

integrable.

• Hence h(X )X is Pettis integrable by Lemma 2.6.3.
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Construction of RKHSs

Lemma 2.6.6 The map ϕ : B∗ → H defined as ϕ(h) = E(h(X )X ) is weak* sequentially
continuous. Consequently, if B∗0 is sequentially dense in B∗ for the weak* topology, H is the
closure of ϕ(B∗0 ) for the norm of H, ‖·‖H .

• The weak* topology of B∗ is the topology of pointwise convergence over B, denoted by
fn →w∗ f (iff fn(x)→ f (x) for all x ∈ B).

• B∗0 is sequentially dense in B∗ if for any h ∈ B∗ there is a sequence {hn} ⊂ B∗0 such that
hn →w∗ h.

• ϕ(h) is weak* sequentially continuous if ‖ϕ(hn)− ϕ(h)‖H → 0 when hn →w∗ h.

• Proof For Gaussian random variables, almost sure convergence implies L2 convergence.
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RKHS of Brownian motion

Example 2.6.7 (The RKHS of Brownian motion.)

• Brownian motion on [0,1] is a centered sample continuous Gaussian process W whose
covariance is E(W (s)W (t)) = s ∧ t, s, t ∈ [0, 1].

• It can be thought as a B-valued random variable where B = C([0, 1]) endowed with sup
norm.

• Let B∗0 be the set of finite linear combinations of point masses
∑n

i=1 akδti .

• B∗0 is weak* sequentially dense in B∗, which is the space of finite signed measures in [0,1]

• For h ∈ B∗0 , ϕ(h) = E(h(W )W ) is piecewise linear continuous functions on [0,1] with

h(0) = 0 and ‖h‖2
H =

∫ 1
0 (h′(t))2dt.

• Since h′(t) is a step function and step functions are dense in L2, the closure of ϕ(B∗0 ) is
the set of absolutely continuous functions on [0,1] which are zero at zero and whose
derivative is in L2([0, 1]).

• By Lemma 2.6.6,

H =
{
f : f (0) = 0, f is absolutely continuous, f ′ ∈ L2([0, 1])

}
equipped with the norm

‖f ‖2
H =

∫ 1

0
(f ′(t))2dt.



17/1

RKHS is a separable Hilbert space.

Proposition 2.6.9 Let X be a centered B-valued Gaussian variable and B a separable Banach
space. Then H is a separable Hilbert space and a measurable subset of B. The embedding of H
into B is continuous, and in fact, the unit ball OH = {h ∈ H : ‖h‖H ≤ 1} is a compact subset
of B).

Proof. By Alaoglu’s theorem, the unit ball B∗1 in B∗ is compact for the weak* topology. Thus
there is a countable set D which is weak* dense in B∗1 . Since B∗ = ∪n(nB∗1 ), B∗0 := ∪n(nD) is
countable and weak* sequentially dense in B∗. Since H is closure of ϕ(B∗0 ), H is separable.
Let h ∈ H and let k(X ) ∈ F̄ be such that h = E(k(X )X )

‖h‖ = sup
f∈B∗

1

|E(k(X )f (X ))| ≤ [E(k(X )2)]1/2 sup
f∈B∗

1

[E(f (X )2)]1/2 = σ ‖h‖H

where σ = supf∈B∗
1

[E(f (X )2)]1/2, which shows that the embedding of H into B is continuous.

Remark. The RKHS-norm on H is stronger than the original norm on B, and therefore a
‖·‖H -Cauchy sequence in H0 := {E(h(X )X ) : h(X ) ∈ F} is a ‖·‖-Cauchy sequence in B. Hence
the RKHS H, which is the completion of H0 under ‖·‖H , can be identified with a subset of B.
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The Karhunen-Loeve expansion of the Gaussian process

Theorem 2.6.10 Let X be a centered B-valued Gaussian variable and B a separable Banach
space, and let H be its RKHS. Let zj , j ∈ N be a complete orthonormal system of H, and let
kj (X ) ∈ F̄ be such that E(kj (X )X ) = zj . Then the series

∑∞
j=1 E(kj (X )X )kj (X ) converges a.s.

to X in the norm of B (and the series reduces to a finite sum if dim(H) <∞).

Note. kj (X ), j ∈ N are iid N(0, 1) random variables, since
∥∥zj∥∥2

H
=
〈
E(kj (X )X ),E(kj (X )X )

〉
H

= E(kj (X )kj (X )) = 1.

Proof. Define U : H → L2(Ω,Σ,P) by U(E(h(X )X )) = h(X ). For any f ∈ B∗, by the linearity
of U,

f (X ) = U(E(f (X )X )) = U

∑
j

〈
zj ,E(f (X )X )

〉
H
zj

 = U

∑
j

E(f (X )kj (X ))zj


=
∑
j

f (E(kj (X )X ))U(zj ) =
∑
j

f (E(kj (X )X ))kj (X )

where the series converges in L2(P). In other words, for any f ∈ B∗,

f

 n∑
j=1

E(kj (X )X )kj (X )

 =
n∑

j=1

f (E(kj (X )X ))kj (X )→L2(P) f (X ).

By Levy-Ito-Nisio theorem (convergence in distribution of all marginals f (
∑n

i=1 Xi ) to the
marginals f (X ) of some Borel measurable map X in a separable Banach space B for any f ∈ B∗,
implies the almost sure convergence of the series

∑n
i=1 Xi ),

∑n
j=1 E(kj (X )X )kj (X )→ X a.s.


